Two new classes of quantum MDS codes

نویسندگان

  • Weijun Fang
  • Fang-Wei Fu
چکیده

Let p be a prime and let q be a power of p. In this paper, by using generalized Reed-Solomon (GRS for short) codes and extended GRS codes, we construct two new classes of quantum maximum-distanceseparable (MDS) codes with parameters [[tq, tq − 2d+ 2, d]]q for any 1 ≤ t ≤ q, 2 ≤ d ≤ ⌊ tq+q−1 q+1 ⌋+ 1, and [[t(q + 1) + 2, t(q + 1)− 2d+ 4, d]]q for any 1 ≤ t ≤ q− 1, 2 ≤ d ≤ t+2 with (p, t, d) 6= (2, q − 1, q). Our quantum codes have flexible parameters, and have minimum distances larger than q 2 +1 when t > q 2 . Furthermore, it turns out that our constructions generalize and improve some previous results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes

Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. In this paper, we give two new constructions of quantum MDS convolutional codes derived from generalized Reed-Solomon codes and obtain eighteen new classes of quantum MDS convolutional codes. Most of them are new in the sense that the parameters of the codes are different from all th...

متن کامل

New quantum MDS codes derived from constacyclic codes

Quantum error-correcting codes play an important role in both quantum communication and quantum computation. It has experienced a great progress since the establishment of the connections between quantum codes and classical codes (see [4]). It was shown that the construction of quantum codes can be reduced to that of classical linear error-correcting codes with certain self-orthogonality proper...

متن کامل

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

One of the central tasks in quantum error-correction is to construct quantum codes that have good parameters. In this paper, we construct three new classes of quantum MDS codes from classical Hermitian self-orthogonal generalized Reed-Solomon codes. We also present some classes of quantum codes from matrix-product codes. It turns out that many of our quantum codes are new in the sense that the ...

متن کامل

Constructing new q-ary quantum MDS codes with distances bigger than q/2 from generator matrices

The construction of quantum error-correcting codes has been an active field of quantum information theory since the publication of [1, 2, 3]. It is becoming more and more difficult to construct some new quantum MDS codes with large minimum distance. In this paper, based on the approach developed in the paper [4], we construct several new classes of quantum MDS codes. The quantum MDS codes exhib...

متن کامل

A Construction of MDS Quantum Convolutional Codes

In this paper, two new families of MDS quantum convolutional codes are constructed. The first one can be regarded as a generalization of [36, Theorem 6.5], in the sense that we do not assume that q ≡ 1 (mod 4). More specifically, we obtain two classes of MDS quantum convolutional codes with parameters: (i) [(q + 1, q − 4i + 3, 1; 2, 2i + 2)]q , where q ≥ 5 is an odd prime power and 2 ≤ i ≤ (q −...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018